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COVERING THE CIRCLE WITH RANDOM ARCS
OF RANDOM SIZES

by

Andrew F. Siegel
and
Lars Holst

ABSTRACT

Consider the random uniform placement of a finite number of arcs on
the circle, where the arc lengths are sampled from a distribution on
(0,1). We provide exact formulae for the probability that the circle
is completely covered and for the distribution of .the nunber of uncovered
gaps, extending Stevens' (1939) formulae for the case of fixed equal arc
lengths. A special class of arc length distributions i{s considered, and
exact pfobabilities of cover;g; are tabulated for the uniform distribution

on (0,1). Some asymptotic results for the number of gaps are also given.
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1. Introduction

Many authors have considered problems relating to the coverage of a
circle by randoa arcs of equal sizes, including Whitworth (1897), Stevens
(1939), Pisher (1940), Votaw (1946), Domb (1947), Flatto and Konheim
(1962), Solomon (1978), Holst (1980 a,b,c and 1981), and Siegel (1978b
and 1979). When the arc lengths are not equal, few results are known.
Conditions under which a given infinite sequence of arc lengths will
almost surely cover the circlewere studied by Dvoretzki (1956), Mandelbrot
(1972), Shepp (1972), and others. However, when the number of arcs is
finite, there is no known simple férmula for the coverage probability
(Shepp, 1972), although some results are available concerning the amount
of the circle covered in this case (Yadin and Zachs, 1980). Some approxi-
mations to the coverage probability using moments and simulations were
provided by Siegel (1978a).

We provide an exact formula for the probability of covering thé
circle with n random arcs of random independent sizes in Sgction 2.
The formula is derived by considering the number of uncovered gaps,
thereﬁy extending Stevens' (1939) formula to the case of random arc
length. Feasibility of computation is demonstrated in Section 3 for
the special case of arcs of uniform lengths and a related class of dis-
tributions. Some asymptotics concerning the number of uncovered gaps

are obtained in Section 4.
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2. Distribution of the Number of Gaps and the Probability of Coverage

Consider n arcs placed uniformly and independently at random on a
circle of circumference one. Let the arc lengths be independent and iden-
tically distributed random variables Ll' ceay Ln' chosen from the cumu-
lative distribution function F on (0,1). The number of uncovered gaps
will be denoted Nn. Note that Nn =0 is tho’ event of complete coverage.
An exanple with N, = 2 1s illustrated in the figure.

Theorem 2.1. The distribution of Nn is given by

. n
g = Q@ 1 G SNl 4 2.1)
where
I [ k E Yy n-k ,
- ‘I T Flu )] [ I F(v)d\J du (2.2)
* ():i‘_‘1 u=l) Li=1 1l La o -
k k n-k
- z{ [11[1 r(sik)] [jzl B (S5y-L) +] } 2.3)

and slk’ ooy skk denotes the spacings between k independent uniform
points on the circle. The positive part function is (c)_,_ = max(t,0).

The first terms are

£ = 1
g =M- 100} il

1 1-u n-2
&, = I F(u)F(1l-u) [r F(v)dv + [ F(v)dv du
2 Jo 0 0

and the first momeot is E(N) = nll - s(x.)]""l.
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Figure. The event of N, = 2 uncovered gaps when n=4 random arcs are

placed on the circle.

Corollary. The probability of completely covering the circle is

a K n k k Y n-k
P(N_=0) = I (-1) ) I K [n I-‘(ui)][ ) I F(v)dv] du. (2.4)
. k=0 (F4my ug=1) Li=1 3=1 Jo -

The first =m terms suffice whenever arcs must have length at least 1l/m
because the product term will be zero for the higher terms.
Proof. Consider the events Ai = "clockwise endpoint of arc 1 1is
not covered”. The figure shows the case in which A1 and A% occur.
k ~
Def ine Ek - P(rk_l Ai)’ Using reasoning analogous to Stevens (1939,

formula 4.62) we obtain (2.1). To calculate Ek' observe that




k
£ - r( 191 {t, < sik}] n nn_) (2.5)

vhere slk’ csey skk are the langths of the gaps between clockwise end- A

points of the first k gaps and B _, 1is the event “none of the arcs

k+tl, ..., n cover the clockwise endpoints of arcs 1, ..., k." Condi-

tioning on slk’ eoey skk' independence of the arc lengths gives us

k

An additional arc will fall within one of the first k gaps with condi-
tional probabilitcy

k
z{jzl (sjk-t.) +|z’.n‘. cees su} .
Again using independence of arc lengths, we have

k

n-k
P(B_ IS0 -oes S0 ® [.121 B (S5, +] 2.7

which, together with (2.6) establishes (2.3). VWriting expectations as

integrals and integrating by parts we obtain (2.2). Because N, is the

a
sum of indicator functions N“ =- Z I(Ai)' its first moment is
i=]

n-1
E(N) = nP(A,) = ug; = n[l - E(L)] . 0
The formula (2.4) for coverage probability does reduce to Stevens'

(1939) formula when arcs have fixed length a. In this case F(x) =

I(x > a) and from (2.3) we have




el o] (L)

i=1 i=1
The product term allows us to drop the positive part to obtain
n-k
Ek = [P(all sik 2 a)] - (1-ka)

which reduces to

n-1
Ek -‘(1-k1)+ . (2.8)

Substituting this into formula (2.4) we obtain Stevens' formula for equal

arcs:

n
P(cover) = ) (-1)k (:) (l-ka):fl .
k=0 ,

3. Uniform Arc Length and Related Distributions

If the cumulative distribution function of the arc length has the

special form

F(x) = x>, 0<x<1 (3.1)

for some « > 0, then the probabilities in Section 2 can be simplified
by performing the integratioms.

Theorem 3.1. If F(x) = xcﬂ then Ek from Theorem 2.1 is

n-k k
:, - (k1)1 > (m ) T Tl @+ (3.2)

(a+1)®* P@+)n]) Kk te1

where the sum is over nonnegative integers m,. An equivalent formula

with fewer terms to sum is obtained if we define “5 - #(mi-j):
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E, = (k1) ! ( * ( i ) (3.3)
k¥ (a+1)™* I'((a+1)n) (mli...ink) NSRRI A CHOTON %

ﬁmi-n-k

k
« I r[(a+1)(m1+l)].
i=}

Corollary. The probability of covering the circle with n random

arcs whose lengths are chosen independently from the uniform distribution

on (0,1) 1is
n k n-k
- P(cover) = 1 + (2“11), ) 1) — Z ) (3.4)
=277 k=l (n-k)!k 2 k Byyeee
. () @ =n-k)
i=3 1

k
« I (2u1+1)! ..

i=1

Despite its complicated appearance, it was tabulated on a hand cal-
culator for up to 10 arcs, as shown in the table, second column. The
third column allows comparison with the case of fixed arcs of the expected
length, 1/2. We see that the differences in coverage probability are
most evident wvhen n dis small.

To further assess tﬁe differences between placing fixed and random
arc lengths, coluan & of the table lists the fixed arc length whose cover-
age probability is equal to that of the uniform random arc lengths. These
equivalent fixed arc length values converge to .5, again suggesting the
similarity as n increases between the random and fixed arc length cover-

age probabdilities.
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Table.
Coverage Probabilities fixed arc lengths
random fixed needed to achieve
arc lengths arc lengths coverage probability
n %(0,1) . .5 listed for 2,(0,1) arcs
1l 0 0 _ -
2 .167 0 .583
3 .383 .250 « 547
4 +569 .500 <524
5 .730 .688 .518
6 .834 .813 512
7 .901 .891 .508
8 .943 .938 .506
9 .967 .965 : .505
10 .982 T .980 ' .504

Proof of Theorem 3.1. Substituting F(x) = xa into (2.3) and per-

forming the inner expectation, we have

1

k k .80k
a k
£y = ‘{(1}_‘1 ) (j_fl =) }

k
Distributions are preserved by the representation Sik = Xi/( Z Xj) where
i=1
xl, coey Xn are independent exponential random variables with mean 1. More-
k
over, (slk’ ooy skk) is independent of jfl Xj, so we can show that

k k Ok
1 1) (L <)
i [(1-1 " 321 ot ]

E(,lf x)(a+1)n-k
S

Ek . (3.5)
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k

The distribucion of Z J(.i is Gamma(k,l) so the denominator of (3.5)
j=1 v

is

I'[(a+)n]
(1(:;))!“ . (3.6)

The numerator of (3.5) can be written as

k n-k

K
[t DI_ gl 7 ¢ ** 3.7

where Yl, cees Yk are independent Gamma (0+1,1). We do a multinominal

expansion to obtain

k :E: n-k k m
L DI ( ) m et 1. (3.8)
(a+l) ( Z mi'n-k) Byseoesly =]
> i=1
The expectation can be evaluated:
o+l B4 ’ |
E(Y, ) 7 = T [(o#l) (m +1)]1/T (a+1) 3.9)

Substituting (3.9) in (3.8), substituting the resulting numerator and
the denominator (3.6) for the ratio in (3.5), we have the result (3.2).
Formula (3.3) 4is pbtained by cowbining summands with the same set of

exponents {m,, ..., mk} and the same multiplicities. 0

REMARK: In a similar way, distributions of the form F(x) = 1-(1-x)",

0<x<l, n=1,2,... can be treated.
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4. Asymptotic Results

Consider the situation of Section 2, but let the arc lengths be chosen

; from the distributions Fn which tend to zero in a suitable way when n + «,

Theorem 4.1. Suppose that the arc lengths 0 < Lln’ LG, cees Lnn <1

are independent, identically distributed, random variables with the distribu-

tion Fn such that

@  EM) =n Q™A aee 4.1)

where M, = E(Ljn)’ and for each k=2,3,... we have

(®) / [E{Fn(xlk)eXP(njzl-Fn(l))dl/(l-kun)‘* 1u(x-1)} 1%4u
- P x/k

amik oK / k!

+1, n+=>, . (4.2)

where X is exponential with mean 1. Then

D

Nn + Poisson (A), n + = (4.3)

Proof. By the Lemma below it follows that we need only establish that

for all k=1,2,3,...,
A (4.4)

where Ek was defined in Theorem.2.l. By the condition (A) this is

true for k=1. Using the identity (t)+ = t+ (-t)+, we see that
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k
n-k
nE*nE«lku*-ZE(L- )) HF(S)}
S le jn “ik’+ j=1 n jk

k n~-k
(l-kun)

k k
n~-k
. Es {(1+jfl EL(Ljn-Sj k)+/ (l-kun)) jEan(sjk)> .

By (4.1) it follows that

nk(l-kun)n'k >k o+ o,

Hence (4.4) is true if for each k=2,3,...

k
Es€l+Yn) jl;l F (Sjk)} +1l,n+o,

where we have introduced the random variable

1
k
Y - : B (Ly 5 )/ (ol = [ ar wrara-).
j=1 =1 Sy

As  14xg e* for x>0 it follows that (4.7) holds if

nY k
ESG jE Fn(sjk) + l,n+ o

(4.

(4.

(4.

(4.

(4.

In a similar way as in Holst (1981) Lemmas 2.1 and 3.1 one can prove

n‘l k
ESG j]'I F (sjk) = (27 k /k')

f [zé (X/K) exp(n/ﬁl-‘r'n(l.))dll(l-kun)*-iu(x-l)} 14y
=00 X/

(4.

that

10)

Combining (4.9) and (4.10) with the Assumption (B) proves the assertion. [J

-10~
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Remark. From the proof it actually follows that the probability
generating function of Nn converges to that of a Poisson(A), provided (4.1)

and (4.2) are fulfilled.

Corollary. If the arcs have equal lengths oy and E(Nn) + A , then

D
Nn + Poisson (A), n + = ,

Proof. In this case the integral in (4.2) simplifies to

ﬁ j;xp (iu(x‘l)'X)dx]kdu =
ku

2

= f~[exp{-iu-kun+iukun]/(l-iu)]kdu

-00

Q0

o et et e = 2 ek, e
-00

As (1--'1u).k is the characteristic function of a Gamma (k,1) distribution. [

In a similar way by explicit calculation of the integrand in (4.2) one

obtains:

Corollary. Let the arc lengths take the values o<aju < ... <Al W with
probabilities Pys +++» Py where p1+ eee + P, = 1l and a1p1+ cee + ap. = 1.
If My * O such that E(Nn) + A , then

D
Nn + ‘Poisson (A), n + = ,

-11-




Lemma. Let (Iln’ eoss Inn)’ n=1l, 2, ... be a triangular array of
exchangeable random variables that take only the values 0 or 1. Suppose

there éxists a A > 0 such that for every fixed k=1, 2, ... we have

k[ K
n E[I I1 + X as o, (4.11)
n
i=1
Then
n D
L I1 + Poisson (A) as n + =, (4.12)
{=1 ®

Proof. Consider the Stirling number of the second kind S(m,k) =

"number of partitions of m distinct elements into k sets.” By exchaunge~

ability it follows that the m'" moment of the left hand side of (4.11) is
m
n m al k
El: 1 = I S(mk) ——= E|] I I
o1 in k=1 (n-k)! =1 in
' th
which tends to the m moment
o k
£ S(m,k) A (4.13)
k=l

of a Poisson ()\) random variable as n + = , establishing (4.12) by conver-

gence of moments. [J
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